4.1 Definition
Before finite element formulation using the virtual work equation, it is necessary to write it in incremental form in accordance with nonlinear solution algorithm. There’re 2 different options unless we want to refer to deformed configuration. Just like we used stress and strain tensors related to undeformed configuration in the previous derivations, the virtual work equation can take the forms of both Total Lagrangian or Updated Lagrangian. However, Updated Lagrangian formulation is more useful in the large deformation analysis; therefore, we will directly focus on this type.
There are 3 configurations to be defined in nonlinear analysis:
\(C_0\) — > Undeformed Configuration
\(C_1\) — > Last Calculated Configuration
\(C_2\) — > Current Deformed Configuration
Unlike Total Lagrangian, all quantities are referred to the the last calculated configuration (\(C_1\)), so the incremental equations for stresses and strains are written between (\(C_1\)) and (\(C_2\)). We can use the notation of Bathe in the book “Finite Element Procedures”.
4.2 Incremental Decomposition
\({}_{t}^{t + \Delta t} S_{ij}\) : Second Piola-Kirchoff stress tensor from time (t) to (t+Δt)
\({}_{t}^{t + \Delta t} E_{ij}\) : Green-Lagrange strain tensor from time (t) to (t+Δt)
\({}_{t} S_{ij}\) : Incremental stress tensor at time t
\({}_{t} E_{ij}\) : Incremental strain tensor at time t
\({}_{t} C_{ijkl}\) : Constitutive tensor at time t
\(_t^{t + \Delta t}b_i\) : body force vector from time (t) to (t+Δt)
\(_t^{t + \Delta t}t_i\) : surface traction vector from time (t) to (t+Δt)
The incremental equation from last calculated (\(C_1\)) to current deformed (\(C_2\)) configuration:
\(\boxed{
\begin{array}{c}
\begin{aligned}
{}_{t}^{t + \Delta t} S_{ij}&={}_{t}^{t } S_{ij} + {}_{t} S_{ij} \\
&={}_{}^{t}\sigma_{ij} + {}_{t} S_{ij}
\end{aligned}
\end{array}
}\)
Note that \({}_{t}^{t } S_{ij} = {}_{}^{t}\sigma_{ij}\) because the stress at time t with respect to t gives the current stress (Cauchy’s stress) at (\(C_1\)).
\(\boxed{
\begin{array}{c}
\begin{aligned}
{}_{t}^{t + \Delta t} E_{ij} &= {}_{t}^{t} E_{ij} + {}_{t} E_{ij} \\
&= {}_{t} E_{ij}
\end{aligned}
\end{array}
}\)
\({}_{t}^{t } E_{ij}\) is taken 0 because in Updated Lagrange formulation the strain is defined as the incremental strain between two configurations; on the other hand, the total strain is taken according to initial configuration in Total Lagrange formulation.
The relation between second Piola-Kirchoff and Green-Lagrange tensors can be expressed by constitutive law:
\(\boxed{{}_{t} S_{ij} = {}_{t} C_{ijkl} \: {}_{t} E_{kl}}\)
Let’s simplify the Green-Lagrange strain tensor which was derived before:
\(\displaystyle {}_{t} E_{ij} = \underbrace{\frac{1}{2}\left( {}_{t} u_{i,j} + {}_{t} u_{j,i}\right)}_{{}_{t} e_{ij}} + \underbrace{\frac{1}{2}\left({}_{t} u_{k,i}\right)\left({}_{t} u_{k,j}\right)}_{{}_{t} \eta_{ij}}\)
\({}_{t} \boldsymbol{e}_{ij}\) and \({}_{t} \boldsymbol{\eta}_{ij}\) are the linear and nonlinear decomposition of the Green-Lagrange strain tensor. Taking the variation:
\(\boxed{\delta{}_{t} E_{ij} = \delta{}_{t} e_{ij} + \delta{}_{t} \eta_{ij} =\delta{}_{t}^{t + \Delta t} E_{ij} }\)
4.3 Re-arrangement of Virtual Work Equation
We have already derived the main equation with virtual work principle:
\(\displaystyle \int\limits_{}(S:\delta E)\:dV_0- \int\limits_{}\delta u \cdot \rho b\:dV_0- \int\limits_{}\delta u \cdot t\:dA_0 = 0\)
The quantities are referred to the initial undeformed configuration, so we can transform it in accordance with Updated Lagrange formulation by referring the quantities to the last calculated configuration \(C_1\); in other wors, time t. Writing in indicial form:
\(\displaystyle \int\limits_{}(S:\delta E)\:dV_0 \; \rightarrow \; \int\limits_{_{}^{t}V} ({}_{t}^{t + \Delta t} S_{ij}) \: (\delta \: {}_{t}^{t + \Delta t} E_{ij}) \: d_{}^{t}V\)
\(\displaystyle \int\limits_{}\delta u \cdot \rho b\:dA_0 + \int\limits_{}\delta u \cdot t\:dA_0 \; \rightarrow \; \int\limits_{_{}^{t }V}\delta u_i \: \rho \: (_t^{t + \Delta t}b_i) \: d_{}^{t}V + \int\limits_{_{}^{t }A}\delta u_i \: (_t^{t + \Delta t}t_i) \: d_{}^{t}A \)
Let’s define the external work at time \((t + \Delta t)\) as \(_{}^{t+ \Delta t}R\), so the virtual work equation becomes:
\(\boxed{\int\limits_{_{}^{t}V} ({}_{t}^{t + \Delta t} S_{ij}) \: (\delta \: {}_{t}^{t + \Delta t} E_{ij}) \: d_{}^{t}V = _{}^{t+ \Delta t}R}\)
Now, substitute the equivalent experssions which were found above:
\(\displaystyle \int\limits_{_{}^{t}V} ({}_{}^{t}\sigma_{ij} + {}_{t} S_{ij}) \: (\delta{}_{t} e_{ij} + \delta{}_{t} \eta_{ij}) \: d_{}^{t}V = _{}^{t+ \Delta t}R\)
\(\displaystyle \int\limits_{_{}^{t}V} {}_{t} S_{ij} \: (\delta{}_{t} e_{ij} + \delta{}_{t} \eta_{ij}) \: d_{}^{t}V + \int\limits_{_{}^{t}V} {}_{}^{t}\sigma_{ij} \: (\delta{}_{t} e_{ij} + \delta{}_{t} \eta_{ij}) \: d_{}^{t}V = _{}^{t+ \Delta t}R\)
\(\displaystyle \int\limits_{_{}^{t}V} {}_{t} C_{ijkl} \: ({}_{t} e_{kl} + {}_{t} \eta_{kl}) \: (\delta{}_{t} e_{ij} + \delta{}_{t} \eta_{ij}) \: d_{}^{t}V + \int\limits_{_{}^{t}V} {}_{}^{t}\sigma_{ij} \: \delta{}_{t} \eta_{ij} \: d_{}^{t}V + \int\limits_{_{}^{t}V} {}_{}^{t}\sigma_{ij} \: \delta{}_{t} e_{ij} \: d_{}^{t}V = _{}^{t+ \Delta t}R\)
After re-arrangement, we finally get a general form below. This is to be solved by finite elements discretization.
\(\boxed{\begin{aligned}
&\int\limits_{{}^{t}V} {}_{t} C_{ijkl} \: {}_{t} e_{kl} \: \delta {}_{t} e_{ij} \: d^t V
+ \int\limits_{{}^{t}V} {}_{t} C_{ijkl} \: {}_{t} \eta_{kl} \: \delta {}_{t} e_{ij} \: d^t V
+ \int\limits_{{}^{t}V} {}_{t} C_{ijkl} \: {}_{t} e_{kl} \: \delta {}_{t} \eta_{ij} \: d^t V \\
&+ \int\limits_{{}^{t}V} {}_{t} C_{ijkl} \: {}_{t} \eta_{kl} \: \delta {}_{t} \eta_{ij} \: d^t V
+ \int\limits_{{}^{t}V} {}^{t} \sigma_{ij} \: \delta {}_{t} \eta_{ij} \: d^t V
+ \int\limits_{{}^{t}V} {}^{t} \sigma_{ij} \: \delta {}_{t} e_{ij} \: d^t V
= {}^{t+ \Delta t} R
\end{aligned}}\)
References:
[1] Bathe, K.J. (2006) Finite Element Procedures.
[2] Yang YB, Kuo SR. (1994) Theory and analysis of nonlinear framed structures.